
Table: Customers

customer_id name address age membership

1 Sue 1 Smith Street 21 bronze

2 Joe 1 Smith Street 22 silver

3 Mary 2 Louis Lane 38 gold

4 Rick 65 silver

Table: Contacts

customer_id contact_details

1 sueandjoe@gmail.com

1 0412 345 678

2 sueandjoe@gmail.com

Table: Levels

membership discount early_access

bronze 0.1 false

silver 0.2 false

gold 0.5 false

platinum 0.8 true

“SQL Statements will basically all look something like this:”

SELECT field(s), AggregateFunction(field) AS alias
FROM table t INNER JOIN OtherTable ot
 ON t.field == ot.field
WHERE filter == row filter (applied before group by) OR ..
GROUP BY fields (often in conjunction with Aggregates)
HAVING filter == group row filter (applied after group by)
ORDER BY field DESC, field2 ASC

SQL Functions

SELECT COUNT(*), membership
FROM Customers
GROUP BY membership

SELECT AVG(age), membership
FROM Customers
GROUP BY membership

“Aggregate functions you might see on the
exam include SUM, MAX, MIN, COUNT and AVG.
Other functions include DISTINCT and ROUND.
You may also see Arithmetic functions:”

SELECT ROUND(discount * 49.95,2)
FROM Levels
WHERE membership == "gold"

SELECT name, (age + 5)
FROM Customers

SELECT COUNT(*) as "number of rows"
FROM Customers JOIN Contacts
 ON Customers.customer_id == Contacts.customer_id

“The default JOIN in SQLite is an INNER JOIN. An Inner Join selects
only matching records from joined tables. The above result is 3.”

SELECT COUNT(*) as "number of rows"
FROM Customers x LEFT JOIN Contacts y
 ON x.customer_id == y.customer_id

“This gives us all records in Customers, and matching Contacts == 5.”

“A subquery (aka inner / nested query) is an SQL
query within a query. Subqueries return individual
values or a list of records to the enclosing query.”

SELECT name
FROM Customers
WHERE age > (
 SELECT AVG(age)
 FROM Customers
)

SELECT name
FROM Customers
WHERE membership NOT IN (
 SELECT membership
 FROM Levels
 WHERE early_access == true
)

AND vs OR vs NOT:

 X AND Y (only results with both)

 X OR Y (results with both or either)

 NOT Y (results with just X, excluding those with X AND Y or just Y)

x and y in this
query are used
as a table alias

