
Python does not

implement a REPEAT

UNTIL loop. Post-test

loops are arguably poor

programming practise, as

you are placing the user

inside a loop, potentially

forever, without testing a

condition first.

For all algorithms:
• Use consistent wording. The following words could be substituted for each other

depending on context, but once you pick a keyword or way of working, stick to it:

o INPUT, GET, or READ

o OUTPUT, PRINT, DISPLAY, or WRITE (possibly)

o SET, CALCULATE, ASSIGN or SET VARIABLE (possibly)

o y = y + 1 can be OK too if it is obvious without a pseudocode keyword

• Selection and Repetition are both controlled by test conditions, which return a Boolean value (TRUE

or FALSE). Loops will not execute once the value of a test condition has returned FALSE. An IF

statement(s) will only execute if the value of the test condition is TRUE, otherwise the ELSE

statement(s) will be executed (if there are any).

• Selection uses branching. Finish selection with ENDIF and maintain block indenting as you would

with any Python program (but don’t use elif – instead, nest IF statements within IF statements).

If in doubt, treat it like Python.

• Repetition (loops) uses iteration. Maintain block indenting, and use the loop that best fits your

cause:

o Post-test loops (the loop condition is tested after the execution of the loop) use REPEAT

UNTIL. These loops will execute a minimum of once. These may be considered poor practise.

o Pre-test loops (the loop condition is tested before the execution of the loop) use WHILE

ENDWHILE. These loops may not execute at all (minimum of 0) as the condition is tested

first.

o Counted loops use FOR NEXT

• Modularisation involves using modules of code to break up tasks into smaller, more manageable

pieces. Other words for modules include procedures, methods, subroutines or functions.

• Modules may return values. Single equals = assigns a value. Double equals == compares values.

Pseudocode to Python ↓

Pseudocode to Python →

BEGIN

 INPUT num1

 IF num1 > 0 THEN
 OUTPUT "POSITIVE ALREADY"

 ELSE

 WHILE num1 < 1

 CALCULATE num1 = num1 + 1

 ENDWHILE

 OUTPUT "NOW IT'S POSITIVE!"

 ENDIF

 FOR counter = 1 TO 5

 OUTPUT "hi"

 NEXT counter

 CALL module1(5)
END

BEGIN module1(x)

 IF x >= 2 THEN

 REPEAT

 OUTPUT x
 CALCULATE x = x - 1

 UNTIL x == 1

 ENDIF

END module1

#BEGIN

num1 = int(input("num1: "))

if num1 > 0: #THEN

 print("POSITIVE ALREADY")

else:

 while num1 < 1:
 num1 = num1 + 1

 #ENDWHILE

 print("NOW IT'S POSITIVE!")

#ENDIF

for counter in range(1,5):

 print("hi")
#NEXT counter

module1(5)

#END

def module1(x):

 if x >= 2: #THEN

 while True:
 print(x)

 x = x – 1

 if x == 1:

 break

 #ENDIF

#END module1

To solve or desk check algorithms:

 1) Use your left index finger to point to

the line of pseudocode you are executing.

 2) Draw up a table to track values of

variables. Add any new variables to a new

column. Make value changes down rows.

num1 counter
-1 1
0 2
1 3
 4
 5

Pseudocode Pseudocode

