
 

 

Sample 
Documentation 

Cheque Writing Exercise 

 
digisoln.com  

 

 



Page 2 of 7 

 

 

Table of Contents 

 
Executive Summary ................................................................................................................................. 3 

Overview ................................................................................................................................................. 4 

Solution Discussion ................................................................................................................................. 4 

Approach 1: Multiple parsing of the numeric value ........................................................................... 4 

Approach 2: Avoid multiple parsing, working backwards from the end of the sequence ................. 4 

Approach 3: Intuitive hybrid of the above approaches ...................................................................... 4 

Test Plan .................................................................................................................................................. 6 

Future Directions .................................................................................................................................... 7 

 

 

 



Page 3 of 7 

 

Executive Summary 
digisoln.com require cheque writing software that can convert a numerical value into the words 

representing this value.  This documentation outlines potential and used approaches to solve this 

problem, and uses test case scenarios to examine the effectiveness of this solution presented.   

Through analysis of the methods available to complete this problem, the single intuitive parsing of 

the sequence of digits from left to right was found to be the most efficient, scalable and intuitive 

solution.  This was reflected in the test results, which highlighted problems to do with the semantics 

of how words on a cheque are actually read to the client as being a necessary focus point for future 

development. 

Finally, it is determined that the software is not yet ready to go live, as in its current state it is 

neither viable nor profitable for any financial institution.  Further work must be done to integrate 

this software with other tools, to expand its features, and to improve its user interface and help 

facilities. 



Page 4 of 7 

 

Overview 
digisoln.com require a cheque writing program, which accepts a number as input and coverts this 

into words.  These words must be output to the user as a string.  The following documentation 

includes a discussion of the solution presented, as well as a test plan with results. 

 

Solution Discussion 
There were multiple approaches to this problem, which have been detailed in the following sections. 

Approach 1: Multiple parsing of the numeric value 

A possible solution to this problem would be to parse the numeric value a number of times, 

and on each parse perform a different task as shown: 

Parse Direction Activity 

1 Forwards Convert each singular digit into words 

2  Backwards Having discovered the end, parse in reverse, starting from the final 

cent, counting back and joining the correct words together to form 

conjunctions – e.g. “Fifty-five”. 

3  Backwards Again parsing in reverse, starting from the end, counting back to 

convert words in the “teens” – e.g. “Fifteen”, “Fourteen”, “Eleven”. 

4 Backwards Finally counting backwards, add all remaining words – e.g. 

“THOUSAND”, “HUNDRED”, “DOLLARS” etc. 

 

The use of this multiple parsing was not deemed ideal – as the cost of time / efficiency of 

this algorithm is far greater than the solution needs to be. 

Approach 2: Avoid multiple parsing, working backwards from the 

end of the sequence 

It appears that Approach 1 primarily parses from the end – this is ideal in working backwards 

from the cents to determine the size of each denomination presented. 

However, knowing the capabilities of String processing in .Net in determining length, size 

and positioning of elements within a string, it was determined that parsing from the front of 

the sequence – as the number would be read by a human – will provide a more intuitive 

abstraction of the programming presented as a human would expect. 

Approach 3: Intuitive hybrid of the above approaches 

By modularising the activities listed in Approach 1 into separate utility functions within the 

main class, as well as single parsing of the numeric sequence from left to right as a human 



Page 5 of 7 

 

would read it, the final approach will present the most scalable, efficient and intuitive 

solution possible. 

This solution will follow the following steps, which can be found within the main conversion 

subroutine presented within the code: 

1. Initialise variables (including the sequence itself, and its length) 

==> START ITERATION LOOP FOR EACH DIGIT IN SEQUENCE (LEFT TO RIGHT) 

2. Read numbers and convert the currently processed digit to words: 

a. If required, process the numbers into “teen” or conjunction words; 

b. Otherwise, handle the numbers as normal / singular digits 

3. Check for punctuation, denominations and joining words for the current digit 

==> END ITERATION LOOP FOR EACH DIGIT IN SEQUENCE (LEFT TO RIGHT) 

4. Return the converted words to the user. 

It was decided approach three was the most eloquent and scalable solution. 

 



Page 6 of 7 

 

Test Plan 
The following results were taken from the live release of version # of the software on ##/##/##: 

Value Result Benchmark 

Met 

Comment 

123.45 ONE HUNDRED AND TWENTY-THREE 

DOLLARS AND FOURTY-FIVE CENTS 

✓  

0001.01 ONE DOLLAR AND ONE CENT ✓  

-123456789123 Incorrect currency value. ✓  

19*4156 Incorrect currency value. ✓  

1001 ONE THOUSAND ONE DOLLARS AND 

ZERO CENTS 

Possibly: Depending on the 

semantics of the client’s preference 

on how this number should be read, 

this will require more attention. 

099000456. NINETY-NINE MILLION FOUR 

HUNDRED AND FIFTY-SIX DOLLARS 

AND ZERO CENTS 

✓  

twenty-two dollars Incorrect currency value. ✓ Prefer more useful 

help prompt. 

123456789123456789 ONE HUNDRED AND TWENTY-THREE 

QUADRILLION FOUR HUNDRED AND 

FIFTY-SIX TRILLION SEVEN HUNDRED 

AND EIGHTY-NINE BILLION ONE 

HUNDRED AND TWENTY-THREE 

MILLION FOUR HUNDRED AND FIFTY-

SIX THOUSAND SEVEN HUNDRED AND 

EIGHTY-NINE DOLLARS AND ZERO 

CENTS 

✓  

123456789123456789

123456789 

There was an error processing your 

request. 

✓ Prefer more useful 

help prompt. 

.1 ZERO DOLLARS AND TEN CENTS ✓  

0000.01 ZERO DOLLARS AND ONE CENT ✓  

1 ONE DOLLAR AND ZERO CENTS ✓  

 Incorrect currency value. ✓ As above. 



Page 7 of 7 

 

Future Directions 
As highlighted in the testing, it is recommended that more useful help prompts be given to users in 

order to assist them using the software.  Further semantics of correct money annunciation based 

primarily on client preference is key to resolving the highlighted test issue of word ordering.  Finally, 

it must be noted that more time must be spent creating a commercially viable piece of software; in 

its current state, the Cheque Writing program is not ready to go live. Further to this, in its current 

state, it is not forecast to be successful as a financial use tool. 

Integrating this with a full suite of financial applications, in which cheques could be printed using 

attached peripheral devices would best further the potential profitability of this software. 


