

Analysis of the problem and relevant contextual information:

This scaffold is an exemplar of the sorts of elements you could include in the IA2 Project – digital solution (30%).

Technical Proposal (also known as stimulus) should be thoroughly analysed here. What other requirements, assumptions, risks, disclaimers,

constraints and / or limitations of the problem(s) need analysis? You would write this information into these text fields.

Note this sample is in no way connected to the scenario you are being assessed on. This content is placeholder only.

Exploring the problem gives opportunities to start addressing some of

the first ISMG Criterion: Retrieving and comprehending, especially:

□ Recognition and description of:

o Programming elements

o UI components

o Useability principles

□ Symbolisation and explanation of:

o programming information and ideas

o interrelationships between UX and data

Opportunities also exist here for evidencing the second

ISMG Criterion: Analysing, especially:

□ Analysis of problem and contextual information to

identify:

o UI elements and features

o Data

o Programmed components

o How these inter-relate

□ Determination of:

o Solution requirements

These text fields allow you to

recognise, describe, explain,

analyse, identify, and determine,

all of which can augment your

symbolisation.

Use this text field written feature

throughout your whole

assignment.

Continue your recognition, description, symbolisation, and explanation throughout the entire document

using these text fields.

It is recommended here that you really focus on an astute determination of essential prescribed and self-

determined criteria. Include technical criteria such as normalization, scalability, algorithmic complexity etc.

Level 0 Context level DFD

Level 1 DFD

System Architecture

Utility – sort results by list view (default) or

grid (tile) view, like mobile. Display results

alphabetically or chronologically. This

functionality enables the user to navigate

lost items if a search cannot be found.

Safety – error message in red to illustrate

steps to resolve problem. Visual

iconography (padlock) to indicate secure

access.

Learnability – consistent use of visual,

recognisable iconography throughout site

to provide familiarity for first time users.

Learnability – online help accessible,

will launch links to interactive tutorials

or contacts for further assistance.

Accessibility – site to be coded using HTML

Semantic Elements for ease of screen-

reader or assistive device recognition:

<header>

<nav> <section> <aside>

<article>

<footer>

Source:

https://www.w3schools.com/html/html5_

semantic_elements.asp

Effectiveness – lets users quickly search for

a lost item using a filter, whether their

account exists or is logged in to save time.

Quick links for quick access to areas that are

frequently accessed (which can be

determined by site metrics).

Page results can be sorted by items per

page (not circled), with pagination used at

the top of the section to indicate the

records being browsed.

Effectiveness – history is backed up via

cloud provider and will be restored on

event of server crash. Transaction log adds

a layer of security insofar as false

transactions can be easily recognised and

flagged via display.

Safety – Breadcrumb trail illustrates site

depth and enables users to recover by

navigating their way to a previously visited

higher level resource.

Accessibility – terms of use shows

compliance of site with accessibility

guidelines identified in Technical

Proposal (stimulus).

Utility – Lost Property management

application delivers a solution to the

Technical Proposal by displaying images,

descriptions, and metadata (such as date

time found, logged etc) of lost items.

Useability principles: principles used to improve the
user experience, including:

• accessibility: ability to be used by many
different people, even people with
disabilities

• effectiveness: ability of users to use the
system to do the work they need to do,
includes reliability

• safety: ability for users to make errors and
recover from the mistake

• utility: ability of the system to provide all
the functionality that users need

• learnability: how easy a system is to learn.

Queensland Curriculum & Assessment Authority,
“Digital Solutions 2019 v1.2 General Senior
Syllabus”. (2020). Retrieved DD Month YYYY, from
https://www.qcaa.qld.edu.au/downloads/senior-
qce/syllabuses/snr_digital_solutions_19_syll.pdf

https://www.w3schools.com/html/html5_semantic_elements.asp
https://www.w3schools.com/html/html5_semantic_elements.asp
https://www.qcaa.qld.edu.au/downloads/senior-qce/syllabuses/snr_digital_solutions_19_syll.pdf
https://www.qcaa.qld.edu.au/downloads/senior-qce/syllabuses/snr_digital_solutions_19_syll.pdf

Accessibility – containers stack elements for

mobile using a responsive CSS framework:

<header>

<nav>

<section>

<aside>

<footer>

Note the semantic tag article is disregarded, as

the article tag is used for independent, self-

contained content irrespective of the page.

Source:

https://www.w3schools.com/tags/tag_article.asp

Accessibility – items displayed in grid view to

accommodate shortage in device screen size.

Descriptions hidden behind Details link. Images

resized as a percentage of viewport width.

Utility – functionality still available via collapsible

containers that can be opened, including as login,

filters, help and settings and website information.

Safety – vertical scrollbar removed, as browsing on a mobile

device will make use of swipe screen gestures. Accessing a

scrollbar on mobile is difficult as these are precision elements

intended for pointing device, which can lead to scrolling errors.

Effectiveness – all lost item results still displayed

enabling the success of the application on mobile

platform. Some default settings assumed, such as 10

items per page, which can be changed in settings

Learnability – button sizes enlarged on mobile

devices to enable easier clicking and navigation.

Iconography consistent with desktop experience

to enable seamless transition to mobile

application.

Stacking of containers using responsive

framework enables most frequented areas to

appear at top of stack, enabling success in finding

and navigating via mobile or tablet device for first

time.

Interrelationships between user experiences and data of the digital prototype:

UI element Related Table.Field – see
ERD below

Method or function call -
see Algorithms below

txtUsername Users.

Username

txtPassword Users.

Password

btnReset reset_password(

 username

)

btnLogin authenticate_user(

 username,

 password

)

Data and programmed components and their inter-relationships to the structure of

the low-fidelity prototype digital solution:

Interrelationships with UX – Programmed components, algorithms, and
generation of code:

Programmed components Algorithm name Code
reset_password() resetPassword Found under

app.route(“/reset”) Line
52

authenticate_user() login Not yet implemented

Interrelationships with UX – Programmed components with data structures and
SQL statements:

Programmed components Data structure in ERD SQL statement
reset_password() Users table UPDATE user SQL

Statement #1 (needs
renaming)

Site map: a list of pages of a web site.

https://www.w3schools.com/tags/tag_article.asp

The Crow’s Feet Notation shows relationship

modality and cardinality:

The modality refers to the minimum number of

times an instance of an entity can be associated

with instances in the related entity. It is shown by

the inner-bound as a zero or one (0 or |).

The cardinality refers to the maximum number of

times an instance of an entity can be associated

with instances in the related entity. It is shown by

the outer-bound (i.e. the one touching the other

entity) as a one or many (| or).

Ψ

Each new record or tuple in the

Distribution table will be associated

with one (and only one) Article.

This lower bound modality constraint enforces

the logic that if an instance an Article exists, it

must also be Distributed.

This is assuming all Articles are written for at

least one Website, on the premise that a

Website will initially commission an Article to be

written.

In addition to this, an Article may also be

Distributed to many different Websites.

Bloggers may be recorded in the

Blogger table without ever having

written an Article. The same Blogger

may also write multiple Articles.

Each Article must be written by one (and

only one) Blogger.

Any Instagram handles that exists must be

attached to only one Blogger.

A Blogger may have an Instagram handle.

Then again, they may not.

This relationship allows a maximum of one

Instagram Handle (IGHandle) per Blogger.

Not all recorded Websites may have

published an Article yet. Some Websites

may have published many different

Articles.

Each individual record or row in the

Distribution table will be linked to one (and

only one) Website.

Similarly, each Category tag made will be

linked to one and one only URL (per tag).

Every Website must be tagged with at least one Category.

A Website may also be tagged with many Categories. The

composite key allows different Website URLs to be tagged

with the same Category.

An Advertiser may be associated with zero or

many Categories.

A Category may be associated with zero or

many Advertisers.

Alternative modalities:

A Category must have one associated Advertiser for that Category:

An Advertiser can only exist if they advertise at least one Category:

JSON / API data source analysis

SQL Statements

• CREATE

• INSERT

• UPDATE

• DELETE

• SELECT

Article

Name Data type Default value Size limit or bound constraint Use Notes

ArticleCode integer Unique article identifier Increments automatically

Headline string 128 characters Article headline

AuthorEmail string 128 characters Written by

ContentPayload string Text (no limit) Article text Mark-up

Metatags string null 128 characters Used to index article in search
engines

optional

Table metadata

Simple Algorithms:

• Page navigation

• Login or sign up

• Browse data

• CREATE, INSERT, DELETE,

UPDATE

More complex:

• Search

• Sort

• Rank

• Filter

• String manipulation

Very complex:

• Match-making

• Pattern analysis

• Prediction

• Encryption

BEGIN resetPassword

INPUT username

EXECUTE "

 UPDATE Users

 SET Password = 'password'

 WHERE username = username;

"

END resetPassword

SQL Statement #1

Algorithm: step-by-step procedure required to

solve a problem.

Pseudocode: a type of descriptive algorithm that

is a mixture of everyday language.

and programming languages

With your algorithms, aim for:

1. Modularisation (break them up, not 1 big

algorithm)

2. Consistency of words – don’t change (e.g.

mixing INPUT and GET is a bad idea)

3. Clear wording – algorithms are not

Python code, they are language

independent so none of this:
app.route("/etc")
def something():

4. Complexity. Try and include:

a. Algorithms that loop

b. Algorithms that branch

5. Try and incorporate either a list or

dictionary data structure (as shown)

6. Consistency of indenting – it really, really

matters.

Ensure algorithms appear here in a console font:

Launch

• More algorithms

• Initial builds (aka wire

frames)

from flask import *

##################### CREATE DATABASE:

import sqlite3

from sqlstrings import *

import os

if not(os.path.exists("lfs.db")): #on first
launch

 db = sqlite3.connect('lfs.db')

 db.cursor().executescript(create_database)

 db.close()

##################### SETUP EMPLOYEE ACCOUNTS:

users = {

 # username : [password, full name]

 "jane@altavista.com":["abc123","Jane Citizen"],

 "wayne@netscape.com":["wayne07","Wayne Smith"],

}

##################### CREATE APP AND SET UP LOGIN LOGOUT FUNCTIONS:

app = Flask(__name__)

app.secret_key = "sssshhhhhhhhh!"

@app.route("/")

def root():

 if session.get("logged_in") == True:

 return render_template("home.html", user=session["user"])

 else:

 return render_template("home.html")

Annotations

@app.route("/login", methods=["POST"])

def login():

 username = request.form["username"]

 password = request.form["password"]

 if username in users:

 if password == users[username][0]:

 session["logged_in"] = True

 session["user"] = users[username][1]

 return redirect("/")

@app.route("/logout")

def logout():

 session.pop("user", None)

 session.pop("logged_in", None)

 return redirect("/")

##################### 1. TRACK MY PACKAGE (unsecured):

@app.route("/tracker")

def tracker():

 if session.get("logged_in") == True:

 return render_template("tracker.html", user=session["user"])

 else:

 return render_template("tracker.html")

@app.route("/tracker_display", methods=["GET"])

def tracker_display():

 pid = request.args.get("pack_id")

 db = sqlite3.connect('lfs.db')

 result = db.cursor().execute(tracker_display_sql, (pid,)).fetchone()

More Annotations

 db.close()

 if session.get("logged_in") == True:

 return render_template("tracker_result.html", main=result,

user=session["user"])

 else:

 return render_template("tracker_result.html", main=result)

##################### 2. LOG NEW DELIVERY:

@app.route("/customer")

def customer():

 if session.get("logged_in") == True:

 return render_template("new_delivery.html", user=session["user"])

 else:

 return redirect("/") # secured, redirect if not logged in

@app.route("/customer_new_delivery", methods=["POST"])

def customer_new_delivery():

 if session.get("logged_in") == True:

 cust_name = request.form["cust_name"]

 dec_signed = request.form["dec_signed"]

 dest_region = request.form["dest_region"]

 db = sqlite3.connect('lfs.db')

 db.cursor().execute(customer_new_delivery_sql,

(cust_name,dec_signed,dest_region))

 db.commit()

 most_recent_pack_id =
db.cursor().execute(get_most_recent_package_id).fetchone()

 db.close()

 return render_template("new_delivery_result.html",

 main="Your pack ID: " +
str(most_recent_pack_id[0]),

 user=session["user"])

 else:

 return redirect("/")

##################### 3. DISPATCH DELIVERIES:

@app.route("/dispatch", methods=["GET"])

def dispatch():

 if session.get("logged_in") == True:

 dest_region = request.args.get("region")

 db = sqlite3.connect('lfs.db')

 result = db.cursor().execute(get_delivery_list,

(dest_region,)).fetchall()

 db.close()

 return render_template("dispatch.html", user=session["user"],

 main=str(result), r=dest_region) #r=hidden region

 else:

 return redirect("/")

@app.route("/mark_as_delivering", methods=["POST"])

def mark_as_delivering():

 if session.get("logged_in") == True:

 courier_name = request.form["courier_name"]

 dest_region = request.form["dest_region"].strip()

 db = sqlite3.connect('lfs.db')

 db.cursor().execute(update_delivery, (courier_name,dest_region,))

 db.commit()

 db.close()

 return redirect("/")

##################### 4. DRIVER ASSISTANCE:

@app.route("/delivery")

def delivery():

 if session.get("logged_in") == True:

 return render_template("driver_assistance.html", user=session["user"])

 else:

 return redirect("/")

app.run(debug=True)

<header>

 <title>Local Freight Services</title>

 <h1 class="page-title">Local Freight Services</h1>

 <link rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-

awesome.min.css">

 <link rel="stylesheet" href="{{ url_for('static', filename='lfs.css')
}}">

</header>

<main>

 <div class="intro">

 <h1 class="title">Your local delivery service.</h1>

 </div>

 <div class="account">

 <p class="meta">Current location: home

 {% if user is defined %}

 Logged in as: <mark>{{user}}</mark>. logout</p>

 {% endif %}

 </div>

Truncated – CODE HAS BEEN CLIPPED HERE BUT CAN BE

SEEN IN THE VIDEO

 <div class="icons">

 </div>

 <div class="links">

 <h3>Links</h3>

 <p><i class="fa fa-map-marker"></i> Track
my delivery</p>

 <p><i class="fa fa-lock"></i> New delivery
request</p>

 <p><i class="fa fa-lock"></i>Warehouse dispatch

 NORTH

 EAST

 WEST

 SOUTH

 </p>

 <p><i class="fa fa-lock"></i> Driver
assistance</p>

 </div>

 <div class="content">

 {% if user is not defined %}

 <form action="/login" method="post">

 <label for="username">Username:</label> <input type="text"

name="username" required>

 <label for="password">Password:</label> <input type="password"

name="password" required>

 <input type="submit" value="Login">

 </form>

 {% endif %}

 <p>We have one large warehouse where we operate our entire

delivery service from, which is located in the main street of town. Bring

your articles of postage to our customer service outlet at the front of

the warehouse, where our customer service attendant will receive your

article and tender the delivery fee. Within 24 hours your article is

processed and dispatched by the Delivery Dispatch Manager to a Courier for

delivery.</p>

More ideas for testing include anything that can determine results for:

• functionality - such as user acceptance testing, making sure solution can handle required tasks

• useability - observe a user, time them to complete a task, and observe any confusion, errors or difficulties

• UI - colour contrast checkers, accessibility testers, test for vision resizing, language translation, screen readers

• compatibility - such as cross browser testing (edge chrome safari firefox ie & mobile browsers)

• performance - such as simulating different internet connections & download speeds

• security - discovering vulnerabilities, SQL injection attack, decoding Flask session cookies, cached credentials, password security,

encryption techniques

Evaluation: make an appraisal by weighing up or assessing strengths, implications and

limitations; make judgments about ideas, works, solutions or methods in relation to

selected criteria; examine and determine the merit, value or significance of something,

based on criteria to make refinements and recommendations - justified by data.

Refinements during development –

screenshot errors

critical evaluation of impacts, user

experience and coded components and

the digital solution against essential

prescribed and self-determined criteria to

make discerning refinements and astute

recommendations justified by data.

You must have proper reference list / proper referencing format for perfect result:

Queensland Curriculum & Assessment Authority, “Digital Solutions 2019 v1.2 General

Senior Syllabus”. (2019).

Retrieved DD Month YYYY, from https://www.qcaa.qld.edu.au/downloads/senior-

qce/syllabuses/snr_digital_solutions_19_syll.pdf

The whole solution (impacts or

consequences, UX, code) must be

measured over these pages against the P

and SD criteria you formulated.

Text must appear here that recommends

or justifies refinements made already

based on data (do not just tick boxes).

https://www.qcaa.qld.edu.au/downloads/senior-qce/syllabuses/snr_digital_solutions_19_syll.pdf
https://www.qcaa.qld.edu.au/downloads/senior-qce/syllabuses/snr_digital_solutions_19_syll.pdf

